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Abstract

Nonlinear forced vibrations and postbuckling of isotropic rectangular plates subjected to thermal variations are studied.

Geometric imperfections are taken into account since they play a fundamental role. The plate is modelled by using the Von

Kármán hypothesis and the equations of motion are obtained by using an energy approach. Plates with fixed edges and

additional rotational elastic constraint are considered. A pseudo-arclength continuation method is used in order to obtain

numerical results. Laboratory experiments have been performed on two plates of different thickness.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Geometrically nonlinear vibrations (also referred to as large-amplitude vibrations) arise when the vibration
amplitude is of the order of the plate thickness. For perfectly flat plates with fixed edges, a strong hardening
type nonlinearity is obtained [1]. However, geometric imperfections may cause the plate to deviate for the ideal
configuration taking a small initial curvature, which may cause an initial softening type nonlinearity, turning
to hardening type for larger amplitudes [1].

The study of nonlinear vibration of plates is introduced in the books of Amabili [1] and Chia [2]. Reviews of
studies on nonlinear vibrations of plates were written by Sathyamoorthy [3] and Chia [4]. The pioneers in this
area were Chu and Herrmann [5]. They studied simply supported rectangular plates with immovable edges and
obtained the free vibration curve (also known as the backbone curve) for the fundamental mode of rectangular
plates with different aspect ratios. The solution was obtained by using a perturbation procedure and shows
strong hardening type nonlinearity.

The literature presents a large number of studies dealing with different boundary conditions, different
solution methods and complicating effects [6–19]. Even if a large number of theoretical studies on large-
amplitude vibrations of plates are available in the scientific literature, experimental results are very scarce.
Complete experimental results are given by Amabili [13,14], and only experimental mode shapes for vibration
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amplitude 0.5 and 0.8 times the plate thickness are given by Harras et al. [15] for the fundamental mode of a
clamped laminated rectangular plate.

Thermal variations with respect to the assembly temperature of fixed plates may introduce very large
thermal stresses in plates since they are flat and they cannot expand due to the boundary conditions. Plates
with fixed edges may buckle due to small thermal variations. Girish and Ramachandra [20] investigated the
postbuckling and the postbuckled linear (small-amplitude) vibrations of rectangular plates with initial
geometric imperfections. Lee and Reddy [21] analysed the transient nonlinear response of laminated
composite plates under thermomechanical loading. Ribeiro [22] studied nonlinear vibrations of rectangular
plates under thermal loads. Ribeiro and Jansen [23] and Librescu and Lin [24] extended the study to shells.
Nonlinear vibrations of rectangular functionally graded plates under thermal variations were studied by
Praveen and Reddy [25], Yang et al. [26], Huang and Shen [27], Park and Kim [28] and Woo et al. [29]. The
temperature effect on circular and skew functionally graded plates was investigated by Allahverdizadeh et al.
[30] and Sundararajan et al. [31], respectively. In general, these studies on nonlinear vibrations of thermally
loaded plates are limited to free vibrations, to transient analysis or to response to harmonic excitation at fixed
excitation frequency. A study on the thermal effect on large amplitude vibrations of Timoshenko beams is due
to Manoach and Ribeiro [32].

In the present study, nonlinear forced vibrations and postbuckling of isotropic rectangular plates subjected
to thermal variations are studied in the frequency range around the first resonace. Geometric imperfections are
taken into account since they play a fundamental role. The plate is modelled by using the Von Kármán
hypothesis and the equations of motion are obtained by using an energy approach. A pseudo-arclength
continuation method is used in order to obtain numerical results. Laboratory experiments have been
performed to support the numerical results.
2. Theory

A rectangular isotropic plate of uniform thickness h and in-plane dimensions a and b is assumed.
A rectangular coordinate system (O; x, y, z) is introduced, where the origin O is assumed at a plate corner on
the middle plane of the plate, x and y are the in-plane coordinates and z is the out-of-plane coordinate. At each
point of the middle surface of the plate, the displacements in the x, y, z directions are denoted by u, v, w,
respectively. Shear deformation and rotary inertia are neglected since for thin plates (and also for moderately
thick plates in case of isotropic material) their contribution is fully irrelevant, as shown in Ref. [33]. The strain
components exx, eyy and gxy at an arbitrary point of the plate are related to the middle surface strains ex,0, ey,0

and gxy,0 and to the changes in the curvature and torsion of the middle surface kx, ky and kxy by the following
three relations [1]:

�xx ¼ �x;0 þ zkx, (1)

�yy ¼ �y;0 þ zky, (2)

gxy ¼ gxy;0 þ zkxy, (3)

where z is, as usual, the distance of the arbitrary point of the plate from the middle surface. Initial geometric
imperfections of the rectangular plate associated with zero initial stress are denoted by normal displacement
w

0
; in-plane initial imperfections are neglected. If Von Kármán hypothesis is used, the following expressions

for the middle surface strains and the changes in the curvature and torsion of the middle surface are obtained,
namely Ref. [1]
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gxy;0 ¼
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kx ¼ �
q2w

qx2
, (7)

ky ¼ �
q2w

qy2
, (8)

kxy ¼ �2
q2w

qxqy
. (9)

These expressions are in general accurate enough for moderately large vibrations of plates.

2.1. Elastic strain energy

The elastic strain energy UP of a rectangular isotropic plate, under Kirchhoff’s hypothesis
szz ¼ tzx ¼ tzy ¼ 0, is given by Ref. [1]

UP ¼
1

2

Z a

0

Z b

0

Z h=2

�h=2
½sxð�x � aDTÞ þ syð�y � aDTÞ þ txygxy�dxdydz, (10)

where a is the coefficient of thermal expansion and DT (Kelvin) is the temperature variation (assumed to be
not uniform along the plate thickness) with respect to a reference temperature; sxx, syy and txy are the
Kirchhoff stresses; and exx, eyy and gxy are Green’s strains. Eq. (10) is valid within the limit of elasticity of the
plate’s material and for moderately large displacements; therefore it is suitable in the context of the present
nonlinear study. The simplicity of Eq. (10) is due to the Lagrangian description of the plate, which allows
integration over the plate in the original undeformed configuration. The Kirchhoff stresses for a homogeneous
and isotropic material (case of plane stress) are given by Ref. [1]
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By using Eqs. (1–3,10,11), the following expression is obtained for uniform thickness:
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where the first term, on the right-hand side, is the membrane (also referred to as stretching) energy, the second
one is the bending energy and the third term is due to thermal effects. It is now assumed that the thermal
distribution is constant along x and y, and is linear along z, i.e.

DT ¼ DT0 þ DT1z=h, (13)

where DT0 is the thermal variation of the middle surface of the plate, and the external surfaces of the plate
have temperature variations DT0�DT1/2 and DT0+DT1/2, respectively.
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Under the assumption (13), the last of the three integrals on the right-hand side of Eq. (12) can be integrated
on z giving

�a
Eh

1� n

Z a

0

Z b

0

DT0ð�x;0 þ �y;0Þdxdy� a
Eh2

12ð1� nÞ

Z a

0
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0

DT1ðkx þ kyÞdxdy. (14)

Eq. (14) shows that for similar thermal variations DT0 and DT1 and similar strain and change in curvature,
the second term is smaller than the first one by the factor h/12, which is small for thin plates. Eqs. (12) and (14)
can be written as a function of the middle-surface displacements u, v, w by using Eqs. (4)–(9). Since
Eqs. (4)–(6) present linear and nonlinear terms in w, Eq. (14) introduces both linear and quadratic terms in the
plate displacements in Eq. (12). In particular, DT0 introduces in-plane strains and DT1 introduces bending
strains.
2.2. Boundary conditions and solution

The kinetic energy TP of a rectangular plate, by neglecting rotary inertia, is given by

TP ¼
1

2
rPh

Z a

0

Z b

0

ð _u2 þ _v2 þ _w2Þdxdy, (15)

where r
P
is the mass density of the plate. In Eq. (6) the overdot denotes a time derivative.

The virtual work W done by the external forces is written as

W ¼

Z a

0

Z b

0

ðqxuþ qyvþ qzwÞdxdy, (16)

where qx, qy and qz are the distributed forces per unit area acting in x, y and z directions, respectively. In the
present study, only a single harmonic force orthogonal to the plate is considered; therefore qx ¼ qy ¼ 0. The
external distributed load qz applied to the plate, due to the concentrated force f̃ , is given by

qz ¼ f̃ dðy� ỹÞ dðx� x̃Þ cosðotÞ, (17)

where o is the excitation frequency, t is the time, d is the Dirac delta function, f̃ is the force magnitude positive
in z direction; x̃ and ỹ give the position of the point of application of the force.

Plates with fixed edges are considered because they are highly sensitive to thermal variations since they
cannot expand. The following boundary conditions are introduced for plates with fixed edges:

u ¼ v ¼ w ¼ w0 ¼ 0; Mx ¼ �kqw=qx at x ¼ 0; a, (18a2e)

u ¼ v ¼ w ¼ w0 ¼ 0; My ¼ �kqw=qy at y ¼ 0; b, (19a2e)

where k is the stiffness per unit length of the elastic, distributed rotational springs placed at the four edges,
x ¼ 0, a and y ¼ 0, b; the minus sign in Eqs. (18e) and (19e) applies at the boundaries x ¼ 0 and y ¼ 0.
Eqs. (18e) and (19e) represent the case of an elastic rotational constraint at the shell edges. They give any
rotational constraint from zero bending moment (Mx ¼ 0 and My ¼ 0, unconstrained rotation, obtained for
k ¼ 0) to perfectly clamped plate (qw=qx ¼ 0 and qw=qy ¼ 0; obtained as limit for k-N), according to the
value of k.

The displacements u, v and w are expanded by using the following expressions, which satisfy identically the
geometric boundary conditions (18a–c) and (19a–c):

uðx; y; tÞ ¼
XM
m¼1

XN

n¼1

u2m;nðtÞ sinð2mpx=aÞ sinðnpy=bÞ, (20a)

vðx; y; tÞ ¼
XM
m¼1

XN

n¼1

vm;2nðtÞ sinðmpx=aÞ sinð2npy=bÞ, (20b)
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wðx; y; tÞ ¼
XM̂
m¼1

XN̂

n¼1

wm;nðtÞ sinðmpx=aÞ sinðnpy=bÞ, (20c)

where m and n are the numbers of half-waves in x and y directions, respectively, and t is the time; um,n(t),
vm,n(t) and wm,n(t) are the generalized coordinates, which are unknown functions of t. M and N indicate the
terms necessary in the expansion of the in-plane displacements and, in general, are larger than M̂ and N̂,
respectively, which indicate the terms in the expansion of w.

On the other hand, Eqs. (18e) and (19e) can be rewritten in the following form:

Mx ¼
Eh3

12ð1� n2Þ
ðkx þ nkyÞ ¼ �k

qw

qx
at x ¼ 0; a, (21)

My ¼
Eh3

12ð1� n2Þ
ðky þ nkxÞ ¼ �k

qw
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at y ¼ 0; b. (22)

If k is different from zero, an additional potential energy stored by the elastic rotational springs at the plate
edges must be added. This potential energy UR is given by

UR ¼
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In order to simulate clamped edges in numerical calculations, a very high value of the stiffness k must be
assumed. This approach is usually referred to as the artificial spring method [1], which can be regarded as a
variant of the classical penalty method. The values of the spring stiffness simulating a clamped plate can be
obtained by studying the convergence of the natural frequencies of the linearized solution by increasing the
value of k. In fact, it was found that the natural frequencies of the system converge asymptotically with those
of a clamped plate when k becomes very large.

Initial geometric imperfections of the rectangular plate are considered only in z direction. They are
associated with zero initial stress. The imperfection w0 is expanded in the same form of w, i.e. in a double
Fourier sine series satisfying the boundary conditions (18d) and (19d) at the plate edges

w0ðx; yÞ ¼
XM̃
m¼1

XÑ
n¼1

Am;n sinðmpx=aÞ sinðnpy=bÞ, (24)

where Am,n are the modal amplitudes of imperfections; Ñ and M̃ are integers indicating the number of terms in
the expansion.

2.3. Lagrange equations of motion

The non-conservative damping forces are assumed to be of viscous type and are taken into account by using
the Rayleigh’s dissipation function

F ¼
1

2
c

Z a

0

Z b

0

ð _u2 þ _v2 þ _w2Þdxdy, (25)

where c has a different value for each term of the mode expansion. Simple calculations give

F ¼
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2
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2
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2
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" #
. (26)

The damping coefficient cm,n is related to modal damping ratio (in this case it is a damping ratio of the
generalized coordinate), that can be evaluated from experiments, by Bm,n ¼ cm,n/(2mm,nom,n), where om,n is the
natural circular frequency of mode (m, n) and mm,n is the mass associated with this generalized coordinate,
given by mm,n ¼ rsh(ab/4).
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The following notation is introduced for brevity

q ¼ um;n; vm;n;wm;n

� �T
; m ¼ 1; . . .M or M̂ and n ¼ 1; . . .N or N̂. (27)

The generic element of the time-dependent vector q is referred to as qj, which is the generalized coordinate;
the dimension of q is dofs, which is the number of degrees of freedom used in the mode expansion.

The generalized forces Qj are obtained by differentiation of the Rayleigh’s dissipation function and of the
virtual work done by external forces

Qj ¼ �
qF

q _qj

þ
qW

qqj

. (28)

The Lagrange equations of motion are

d

dt

qTP

q _qj

 !
�

qTP

qqj

þ
qU

qqj

¼ Qj ; j ¼ 1; . . . dofs, (29)

where qTP=qqj ¼ 0 and the potential energy is given by U ¼ UP+UR, where UP is given by Eq. (12) and UR by
Eq. (23). These second-order equations have very long expressions containing quadratic and cubic nonlinear
terms. In particular, the only term containing nonlinearities is

qU

qqj

¼
Xdofs
k¼1

f k;jqk þ
Xdofs
i;k¼1

f i;k;jqiqk þ
Xdofs

i;k;l¼1

f i;k;l;jqiqkql , (30)

where coefficients f have long expressions that include also geometric imperfections and thermal variations.
Quadratic nonlinearities of the type qi

2 (in particular for qi ¼ wm,n) are never present in the equations of
motion of perfect flat plates without thermal variation. This is a difference with respect to curved panels and it
is physically explained by the fact that no different displacement is observed for flat plates in z and �z

directions, due to the symmetry. Presence of quadratic nonlinearities is the reason for significant asymmetric
displacement in z and �z that is observed in the results of this study presented in the following sections in case
of initial geometric imperfections or initial thermal buckling. In fact, thermal variations can cause buckling of
the plate, which may result in an initial buckled configuration (no more flat) also in case of plates without
any initial imperfection. Also in this case, quadratic nonlinearities arise in the equations of motion due
to the initial buckled deformation. It can be observed that the presence of quadratic nonlinearities associated
to initial geometric imperfection changes the thermal buckling behaviour of the plate destroying the pitchfork
bifurcation and giving a continuous buckling behaviour, as shown in the following section.

Numerical results show that, for very thin plates, geometric imperfections of the magnitude of the plate
thickness give quadratic terms with an effect of the same order of cubic terms, for vibration amplitude of the
order of the plate thickness. Therefore the classical hardening-type nonlinearity, which is characteristics of flat
plates, is transformed by significant imperfections and thermal variations into softening-type nonlinearity,
turning to hardening-type only for larger vibration amplitudes.

3. Numerical results

The equations of motion have been obtained by using the Mathematica computer software [34] in order to
perform analytical surface integrals of trigonometric functions (e.g. integrals in Eq. (5)). The generic j-th
Lagrange equation is divided by the modal mass associated with €qj and then is transformed in two first-order
equations. A non-dimensionalization of variables is also performed for computational convenience: the
frequencies are divided by the natural radian frequency om,n of the mode (m, n) investigated, and the vibration
amplitudes are divided by the plate thickness h. The resulting 2� dofs equations are studied by using (i) the
software AUTO 97 [35] for continuation and bifurcation analysis of nonlinear ordinary differential equations
and (ii) direct integration of the equations of motion by using the DIVPAG routine of the Fortran library
IMSL. The software AUTO 97 is capable of continuation of the solution, bifurcation analysis and branch
switching by using pseudo-arclength continuation [1] and collocation methods. In particular, the plate
response under harmonic excitation has been studied by using an analysis in three steps: (i) for zero excitation,



ARTICLE IN PRESS
M. Amabili, S. Carra / Journal of Sound and Vibration 321 (2009) 936–954942
the temperature variation is used as bifurcation parameter; the solution has been started at zero thermal
variation where the solution is the trivial undisturbed configuration of the plate and has been continued up to
reach the desired magnitude of the thermal variation; (ii) then, the excitation frequency has been fixed far
enough from resonance and the magnitude of the excitation has been used as bifurcation parameter;
the solution has been continued using as restarting point the deformed configuration obtained at step (i); and
(iii) when the desired magnitude of excitation has been reached, the solution has been continued by using the
excitation frequency as bifurcation parameter.

Initially a numerical test has been performed in order to study the convergence of the buckling temperature
parameter lT ¼ 1000aDT0 for the square isotropic clamped plate under uniform temperature variation studied
by Gossard et al. [36] and by Liew et al. [37] and having the following dimensions and material properties:
a ¼ b ¼ 0.1m, h ¼ 0.001m, E ¼ 198� 109 Pa, r ¼ 7850 kg/m3, n ¼ 0.3 and a ¼ 2� 10�6K�1. Results are
reported in Table 1 and show convergence of the present model to the results in Refs. [36] and [37].

Then, calculations have been performed for a rectangular AISI 304 stainless steel plate, see Fig. 1, with the
following dimensions and material properties: a ¼ 0.25m, b ¼ 0.24m, h ¼ 0.00027m, E ¼ 198� 109 Pa,
r ¼ 7850 kg/m3, n ¼ 0.3 and a ¼ 17.3� 10�6K�1. This plate has fundamental mode (n ¼ 1, m ¼ 1) with
radian frequency o1;1 ¼ 44:4� 2p rad=s for clamped edges simulated with k ¼ 105N/rad. The plate is
considered for harmonic excitation around the fundamental resonance, at the plate centre (at x ¼ a/2 and
y ¼ b/2), of magnitude f̃ ¼ 0:042N, assuming modal damping z1,1 ¼ 0.012 (the same damping ratio is
assumed for all the generalized coordinates). Present results have been obtained by using a model with 39 dofs,
i.e. with 39 generalized coordinates. In particular, they are: w1,1, w3,1, w5,1, w7,1, w1,3, w3,3, w5,3, w7,3, w1,5, w3,5,
w5,5, w1,7, w3,7, u2,1, u4,1, u6,1, u8,1, u2,3, u4,3, u6,3, u8,3, u2,5, u4,5, u6,5, u2,7, u4,7, v1,2, v3,2, v5,2, v7,2, v1,4, v3,4, v5,4, v7,4,
v1,6, v3,6, v5,6, v1,8, v3,8.
Table 1

Convergence of the buckling temperature parameter lT ¼ 1000aDT0 for the isotropic clamped plate studied by Gossard et al. [36] and by

Liew et al. [37]

39 dofs 63 dofs 107 dofs Ref. [36] Ref. [37]

0.375 0.36 0.34 0.337 0.333

Fig. 1. Photo of the stainless steel thin rectangular plate fixed to a thick frame with a traditional exciter (shaker) and laser spot at the

centre of the plate.
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The thermal postbuckling behaviour of the plate subjected to uniform temperature variation is shown in
Fig. 2 and shows buckling through a supercritical pitchfork bifurcation for temperature variation DT0 ¼

0.26K. Branch 2 is arising from the bifurcation point and is associated with plate deflection (in Fig. 2 the plate
deflection at the centre is shown). Therefore, very small increase of the plate temperature with respect to the
−2 −1 0 1 2
ΔT0

−4

−2

0

2

4
2

1
w
x=
L/

2/
h

Fig. 2. Thermal postbuckling of the perfect plate under uniform temperature variation. ▬▬, stable solution; - -, unstable solution.

−2 −1 0 1 2
ΔT0

−4

−2

0

2

4

w
x=
L/

2/
h

Fig. 3. Thermal postbuckling of the plate with initial geometric imperfection under uniform temperature variation.▬▬, plate with initial

imperfection A1,1 ¼ h; - -, perfect plate.

0.9 1 1.1 1.2 1.3 1.4 1.5
�/�1,1

0.2

0.4

0.6

0.8

1

1.2

1.4

w
x=
L/

2/
 h

Fig. 4. Frequency-response curve at the centre of the perfect plate; excitation at the centre with f̃ ¼ 0:042N in the frequency

neighbourhood of the first resonance; results show the first harmonic only; z1,1 ¼ 0.012; 39 dofs.—, stable solution; - -, unstable solution.
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clamping frame cause buckling. On branch 1 the plate has no deflection. In particular, a positive variation DT0

generates plate compression while a negative variation DT0 gives traction with an increase of the natural
frequency.

Fig. 3 shows the effect of geometric imperfection A1,1 ¼ h with the same shape of the fundamental mode
(1,1) and amplitude equal to the plate thickness. The bifurcation is destroyed by the geometric imperfection
and the behaviour is continuous. A deflection increasing the initial curvature due to imperfection is obtained
for a positive variation DT0, while the plate is reducing curvature and deflection for a negative variation DT0.

In case of linear temperature variation through the plate thickness DT1, no bifurcation is obtained also for
the perfect plate, but a deflection arises growing with DT1; anyway, this deflection is very small since the
studied plate is very thin and h is a small number of the order of 10�4, as already discussed after Eq. (14). In
particular, a variation DT1 of the order of 100K gives a negligible deflection in the present case.

The maximum plate oscillation at the centre of the perfect plate is presented in Fig. 4 for harmonic
excitation of 0.042N applied at the centre of the plate in the frequency neighbourhood of the fundamental
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Fig. 5. Frequency-response behaviour of the perfect plate; A1,1 ¼ 0, f̃ ¼ 0:042N and z1,1 ¼ 0.012; 39 dofs.▬▬, stable periodic response; - -,

unstable periodic response. (a) Maximum of the generalized coordinate w1,1; (b) maximum of the generalized coordinate w3,1; (c) maximum of

the generalized coordinate w1,3; (d) maximum of the generalized coordinate w5,1; (e) maximum of the generalized coordinate w5,3; and

(f) maximum of the generalized coordinate w1,5.
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mode; modal damping z1,1 ¼ 0.012 is assumed for all the generalized coordinates. It is evident that the
clamped boundary condition gives strong hardening-type nonlinearity. The strange behaviour near the
response peak is due to two 3:1 internal resonances: (i) between mode (1,1) and (3,1) for o ¼ 1.215�o1,1 and
(ii) between mode (1,1) and (1,3) for o ¼ 1.3�o1,1. The contributions of the most significant generalized
coordinates to the response shown in Fig. 4 are plotted in Fig. 5.

Geometric imperfection A1,1 ¼ 0.91h with the same shape of the fundamental mode completely changes the
plate nonlinear response, as shown in Fig. 6. In fact, the response initially shows a softening-type nonlinearity,
turning to hardening nonlinearity for vibration amplitude around 0.8h. Results in Fig. 6 are non-
dimensionalized in frequency dividing by the natural frequency o1,1 of the perfect plate; in particular, the
natural frequency of the plate with imperfection is about 1.3�o1,1 in this case. A 1/2 subharmonic response is
also shown in Fig. 6 around 0.65�o1,1.
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Fig. 6. Response of the plate with imperfections around the first resonance; A1,1 ¼ 0.91h, f̃ ¼ 0.042N and z1,1 ¼ 0.012; 39 dofs. ▬▬,

stable periodic response; - -, unstable periodic response.
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Fig. 7. Frequency-response curve of the perfect plate in presence of uniform temperature variation DT0 ¼ 0.481K, f̃ ¼ 0:042N and

z1,1 ¼ 0.012; 39 dofs. ▬▬, stable periodic response; - -, unstable periodic response.
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The nonlinear response of the perfect plate with a positive temperature variation DT0 ¼ 0.481K is shown in
Fig. 7. This value of DT0 has been chosen since it gives an initial deflection due to thermal buckling with the
same amplitude of the initial imperfection 0.91h used in Fig. 6. The nonlinear response is of the softening type
and the amplitude is largely reduced with respect to the two previous cases (the ordinate starts at amplitude
0.9h in Fig. 7 differently from other figures). Results in Fig. 7 are non-dimensionalized in frequency dividing
by the natural frequency o1,1 of the perfect plate under no temperature variation; in particular, the natural
frequency of the thermally buckled plate is about 1.2�o1,1 in this case. A 1/2 subharmonic response is also
shown in Fig. 7 around 0.6�o1,1.

The nonlinear response in presence of both temperature variation DT0 ¼ 0.25K and geometric imperfection
A1,1 ¼ 0.5h, giving an initial deflection around 0.91h used in Figs. 6 and 7, is shown in Fig. 8. The response,
see Fig. 8a, is initially strongly softening, becoming strongly hardening for vibration amplitude around 0.8h.
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Fig. 8. Frequency-response curve of the plate with imperfections in presence of uniform temperature variation DT0 ¼ 0.25K, A1,1 ¼ 0.5h,

f̃ ¼ 0:042N and z1,1 ¼ 0.012; 39 dofs. ▬▬, stable periodic response; - -, unstable periodic response. (a) Maximum of the generalized

coordinate w1,1; (b) maximum of the generalized coordinate w3,1; (c) maximum of the generalized coordinate w1,3; (d) maximum of the

generalized coordinate w3,3; (e) maximum of the generalized coordinate w5,1; and (f) maximum of the generalized coordinate w1,5.
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Fig. 9. Effect of uniform temperature variation DT0 on the natural frequency of the fundamental mode (1,1) of the plate with geometric

imperfection A1,1 ¼ 0.5h; 39 dofs.
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Qualitatively the response is similar to the one shown in Fig. 6 for the plate with initial imperfection, but the
nonlinear behaviour is strongly enhanced. Fig. 8 shows the six principal generalized coordinates; 2:1 internal
resonances among mode (1,1) with (1,3) and (3,1) are detected, as well as 3:1 internal resonance between mode
(1,1) and mode (3,3).

Fig. 9 gives the natural frequency of the fundamental mode (1,1) of the plate with geometric imperfection
A1,1 ¼ 0.5h versus the temperature variation DT0; the results in this figure have been obtained by linearizing
the static equilibrium equation involving temperature.

4. Experimental results

Tests have been conducted on two stainless steel plates, plates A and B; plate A has the same dimensions
and material properties used in Section 3 for numerical calculations (a ¼ 0.25m, b ¼ 0.24m, h ¼ 0.00027m,
E ¼ 198� 109 Pa, r ¼ 7850 kg/m3, n ¼ 0.3 and a ¼ 17.3� 10�6K�1); on the other hand, plate B has only one
difference: increased thickness h ¼ 0.5mm. Each plate was practically clamped to a AISI 410 stainless steel
rectangular frame, see Fig. 1, having coefficient of thermal expansion aF ¼ 9.9� 10�6K�1.

The plates have been subjected to (i) burst-random excitation to identify the natural frequencies and
perform a modal analysis by measuring the plate response on a grid of points, (ii) harmonic excita-
tion, increasing or decreasing by very small steps the excitation frequency in the spectral neighbourhood of
the lowest natural frequencies, to characterize nonlinear responses in presence of large-amplitude vibrations
(step-sine excitation). The excitation has been provided by a self-constructed electromagnetic exciter that
transmit the excitation force to the plate by mean of a rare-earth permanent magnet without contact, as shown
in Fig. 10. The reason for using this device is that it minimizes higher harmonics in the excitation.
A piezoelectric miniature force transducer B&K 8203 of the weight of 3.2 g, glued to the plate and connected
to the magnet, measured the force transmitted. The plate response has been measured by using a very accurate
laser Doppler vibrometer by Polytec (sensor head OFV-505 and controller OFV-5000) in order to have non-
contact measurement without introduction of inertia. The time responses have been measured by using the
Difa Scadas II front-end, connected to a HP c3000 workstation, and the software CADA-X 3.5b of LMS for
signal processing, data analysis, experimental modal analysis and excitation control. The same front-end has
been used to generate the excitation signal. The CADA-X closed-loop control has been used to keep constant
the value of the excitation force for any excitation frequency, during the measurement of the nonlinear
response.

Geometric imperfections of the plates have been detected by using a Matsushita ANR 1282 laser
triangulation sensor to measure the actual plate surface.

4.1. Nonlinear results for plate A

The contour plot indicating the deviation from the ideal panel surface is reported in Fig. 11. In particular,
Fig. 11a presents the shape of the plate during the following nonlinear tests, while Fig. 11b shows the second



ARTICLE IN PRESS

Fig. 10. Non-contact excitation system with rare-earth permanent magnet.

Fig. 11. Contour plot indicating measured geometric imperfections as deviation from the flat surface. Deviations are in millimetres;

h ¼ 0.27mm. (a) Tested equilibrium position and (b) second equilibrium position.

M. Amabili, S. Carra / Journal of Sound and Vibration 321 (2009) 936–954948
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equilibrium position of the plate (e.g. see Fig. 2 to observe the two coexisting equilibrium positions of the
buckled plate). Geometric imperfections are always present in actual plates. In the present case, imperfection
presents a complex shape and are very different from the first natural mode (1,1). Actually in the tested plates
these imperfections are associated to initial stresses. These initial stresses are not measured and are not taken
into account in the modelling since the tested plate is extremely thin so the locked-in initial bending stresses are
negligible with respect to the effect of imperfections and in-plane initial stresses are minimized by the
experimental set-up. Geometric imperfections shown in Fig. 11 are very large, being several times the plate
thickness, since the plate is very thin (0.27mm) and presents an initial curvature due to lamination.

Fig. 12 shows the measured oscillation (displacement, directly measured by using the Polytec laser Doppler
vibrometer with displacement decoder DD-200 in the OFV-5000 controller; measurement position at the
centre of the panel) around the fundamental frequency, i.e. mode (1, 1), versus the excitation frequency for
three different force levels: 0.1, 0.2, and 0.3N. The excitation point was at x̃ ¼ a=6 and ỹ ¼ b=6. The natural
(linear) frequency is identified at 48.6Hz at beginning of the nonlinear tests, but it varies with the temperature.

The closed-loop control used in the experiments keeps constant the amplitude of the harmonic excitation
force, after filtering the signal from the load cell in order to use only the harmonic component with the given
excitation frequency. The measured oscillation reported in Fig. 12 has been filtered in order to eliminate any
frequency except the excitation frequency (first harmonic of the response). Experiments have been performed
increasing and decreasing the excitation frequency (up and down); the frequency step used in this case is
0.05Hz, 16 periods have been measured with 128 points per period and 40 periods have been waited before
data acquisition every time that the frequency is changed. The hysteresis between the two curves
(up ¼ increasing frequency; down ¼ decreasing frequency) is clearly visible for all the three excitation levels.
Sudden increments (jumps) of the vibration amplitude are observed when increasing and decreasing the
excitation frequency; these indicate softening-type nonlinearity, which is due to the initial imperfection and the
temperature variation. In fact, Fig. 12 can be favourably compared to Fig. 7, which is for a perfect plate under
uniform temperature variation. In particular, the vibration amplitude larger than h shows amplitude
modulations, as shown in Fig. 13 for the time response at the peak of the curve for excitation 3N. Table 2
gives the temperatures of the plate and the frame at assembly and during the nonlinear tests. In particular,
practically the plate and the frame have the same temperature during experiments. However, an increment of
Fig. 12. Experimental non-dimensional oscillatory displacement (peak) versus non-dimensional excitation frequency for different

excitation (0.1, 0.2, and 0.3N) measured at x ¼ a/6, y ¼ b/6; h ¼ 0.27mm; mode (1,1). J, experimental point; - -, connecting line; -,

direction of movement along the line.



ARTICLE IN PRESS

Fig. 13. Experimental time response for excitation frequency o/o1,1 ¼ 0.7 (36.15Hz), excitation force 0.3N, h ¼ 0.27mm.

Table 2

Temperatures (1C) of the plate, TP, and of the frame, TF, during nonlinear experiments

Assembly 0.1 up 0.1 down 0.2 up 0.2 down 0.3 up 0.3 down

TP 21.0 21.1 21.2 21.4 21.7 22.7 22.8

TF 20.7 20.9 21.2 21.4 21.7 22.7 22.8

Plate A.
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1.8 1C is observed between the initial condition and the temperature measured during the last experiment for
excitation 0.3N decreasing the excitation frequency (down). This increase of temperature is due to the
electronic equipments and amplifiers used during the experiments that produce heating.

Fig. 2 is for a perfect plate clamped to a fixed frame. Since the frame presents a coefficient of thermal
expansion aF ¼ 9.9� 10�6K�1, this must be subtracted to the coefficient a ¼ 17.3� 10�6K�1 of the plate.
Therefore, the temperature scale in Fig. 2 must be multiplied by 2.338 in order to obtain the uniform
temperature variation in case of the plate fixed to the thermally expansible frame used in the experiments. The
buckling thermal load is increased from 0.26K to about 0.61K.

It must be observed that the force input around resonance was only partially distorted with respect to the
imposed pure sinusoidal excitation. This is due to the non-contact excitation, which minimizes higher-order
harmonics. Fig. 14 shows the harmonic components in the excitation signal for 0.3N in the frequency range
investigated. In particular, the second harmonic is always relatively small, while the most problematic is the
fourth harmonic of the excitation signal; anyway, it reaches amplitudes always smaller than the first harmonic
itself, which is the only one controlled.

4.2. Nonlinear results for plate B

The thermal postbuckling behaviour of plate B subjected to uniform temperature variation is shown in
Fig. 15 and shows buckling through a supercritical pitchfork bifurcation for temperature variation
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Fig. 14. Harmonic components of the excitation force for the 3N level, h ¼ 0.27mm; mode (1,1). � ¼ mean value; $ ¼ first harmonic;
J ¼ second harmonic; & ¼ third harmonic; W ¼ fourth harmonic.
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Fig. 15. Thermal postbuckling of the perfect plate under uniform temperature variation. Thin line, h ¼ 0.27mm; thick line, h ¼ 0.5mm.

▬▬, stable solution; - -, unstable solution.
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DT0 ¼ 0.9K. In Fig. 15 comparison with results for plate A are also shown and show a largely decreased
temperature effect with the thickness increase from 0.27 to 0.5mm. Also in this case, the temperature scale in
Fig. 15 must be multiplied by 2.338 in order to obtain the uniform temperature variation in case of the plate
fixed to the thermally expansible frame used in the experiments. Therefore, the buckling thermal load is
increased from 0.9K to about 2.1K.

The measured geometric imperfection of plate B is shown in Fig. 16. Maximum deviation from the flat
surface is of amplitude around half thickness, which can be considered moderate. The geometry of the
imperfection is not far from the first mode (1,1). The plate presented only one stable equilibrium position,
differently from plate A.

Fig. 17 shows the measured oscillation (displacement, directly measured by using the Polytec laser Doppler
vibrometer at the centre of the panel) around the fundamental frequency, i.e. mode (1, 1), versus the excitation
frequency for four different force levels: 0.35, 0.45, 0.55 and 0.9N. The excitation point was at x̃ ¼ a=6 and
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Fig. 16. Contour plot indicating measured geometric imperfections as deviation from the flat surface. Deviations are in millimetres;

h ¼ 0.5mm.

Fig. 17. Experimental non-dimensional oscillatory displacement (peak) versus non-dimensional excitation frequency for different

excitation (0.35, 0.45, 0.55, and 0.9N) measured at x ¼ a/6, y ¼ b/6; h ¼ 0.5mm; mode (1,1). J, experimental point; - -, connecting line;

-, direction of movement along the line.
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ỹ ¼ b=6. The natural (linear) frequency is identified at 66.0Hz at beginning of the nonlinear tests, but it
slightly varies with the temperature. The measured oscillation reported in Fig. 17 has been filtered in order to
eliminate any frequency except the excitation frequency. Experiments have been performed increasing and
decreasing the excitation frequency (up and down) with the same parameters used for plate A. The hysteresis
between the two curves (up ¼ increasing frequency; down ¼ decreasing frequency) is clearly visible for all
the four excitation levels. Differently from plate A, a hardening nonlinearity is detected for plate B. In fact,
plate B presents moderate geometric imperfection and the temperature variation plays a much smaller role,
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Table 3

Temperatures (1C) of the plate, TP, and of the frame, TF, during nonlinear experiments

Assembly 0.35 up 0.35 down 0.45 up 0.45 down 0.55 up 0.55 down 0.9 up 0.9 down

TP 21.0 21.1 21.1 21.1 21.2 21.3 21.5 21.5 21.7

TF 20.5 21.0 21.1 21.1 21.2 21.3 21.5 21.5 21.7

Plate B.
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as shown Fig. 15. Fig. 17 can be favourably compared to Fig. 4, which is for a perfect plate without
temperature variation, but it presents a reduced nonlinearity due to initial imperfection and temperature
variation. Table 3 gives the temperatures of the plate and the frame at assembly and during the nonlinear tests.
Also in this case, the plate and the frame present practically the same temperature, and the maximum
temperature variation is about 2K, i.e. very similar to what observed for plate A.

5. Conclusions

Calculations and experiments show that nonlinear vibration of very thin clamped plates is largely affected
by temperature variations of the order of 1 1C. Actually this value gives plate buckling for the plate A tested
experimentally. The effect of temperature variation decreases with plate thickness. Also geometric
imperfections, measured as deviation from the ideal flat surface, play a fundamental role in predicting the
nonlinear response. Imperfections are usually larger for very thin plates, as shown in the experimental case.
Therefore, both temperature variations and geometric imperfections must be taken into account in many
applications to calculate nonlinear vibrations of thin plates with fixed or clamped edges. In fact, the classical
hardening type nonlinearity characteristic of flat rectangular plates can be transformed into a softening type
nonlinearity by temperature variations and geometric imperfections.
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